In epiffiter
, opposite to the fit_
functions (estimate parameters from fitting models to the data), the
sim_
family of functions allows to produce the DPC data
given a set of parameters for a specific model. Currently, the same four
population dynamic models that are fitted to the data can be
simulated.
The functions use the ode()
function of the
devolve
package (Soetaert,Petzoldt & Setzer 2010) to
solve the differential equation form of the e epidemiological
models.
First, we need to load the packages we’ll need for this tutorial.
The sim_
functions, regardless of the model, require the
same set of six arguments. By default, at least two arguments are
required (the others have default values)
r
: apparent infection raten
: number of replicatesWhen n
is greater than one, replicated epidemics
(e.g. replicated treatments) are produced and a level of noise
(experimental error) should be set in the alpha
argument.
These two arguments combined set will generate random_y
values, which will vary randomly across the defined number of
replicates.
The other arguments are:
N
: epidemic duration in time unitsdt
: time (fixed) in units between two assessmentsy0
: initial inoculumalpha
: noise parameters for the replicatesLet’s simulate a curve resembling the exponential growth.
exp_model <- sim_exponential(
N = 100, # total time units
y0 = 0.01, # initial inoculum
dt = 10, # interval between assessments in time units
r = 0.045, # apparent infection rate
alpha = 0.2,# level of noise
n = 7 # number of replicates
)
head(exp_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01034651
## 2 1 10 0.01568425 0.02079218
## 3 1 20 0.02459905 0.02433959
## 4 1 30 0.03858028 0.04131958
## 5 1 40 0.06050749 0.06037350
## 6 1 50 0.09489670 0.12089660
A data.frame
object is produced with four columns:
replicates
: the curve with the respective ID
numbertime
: the assessment timey
: the simulated proportion of disease intensityrandom_y
: randomly simulated proportion disease
intensity based on the noiseUse the ggplot2
package
to build impressive graphics!
exp_plot = exp_model %>%
ggplot(aes(time, y)) +
geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) +
geom_line(size = 1) +
theme_minimal_hgrid() +
ylim(0,1)+
labs(
title = "Exponential",
y = "Disease intensity",
x = "Time"
)
exp_plot
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
The logic is exactly the same here.
mono_model <- sim_monomolecular(
N = 100,
y0 = 0.01,
dt = 5,
r = 0.05,
alpha = 0.2,
n = 7
)
head(mono_model)
## replicates time y random_y
## 1 1 0 0.0100000 0.0100000
## 2 1 5 0.2289861 0.2581656
## 3 1 10 0.3995322 0.4545163
## 4 1 15 0.5323535 0.5407130
## 5 1 20 0.6357949 0.6835060
## 6 1 25 0.7163551 0.7235810
logist_model <- sim_logistic(
N = 100,
y0 = 0.01,
dt = 5,
r = 0.1,
alpha = 0.2,
n = 7
)
head(logist_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01000000
## 2 1 5 0.01638216 0.01065720
## 3 1 10 0.02672677 0.02521582
## 4 1 15 0.04331509 0.05050620
## 5 1 20 0.06946352 0.06467859
## 6 1 25 0.10958806 0.09057823
gomp_model <- sim_gompertz(
N = 100,
y0 = 0.01,
dt = 5,
r = 0.07,
alpha = 0.2,
n = 7
)
head(gomp_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01000000
## 2 1 5 0.03896283 0.02438837
## 3 1 10 0.10158896 0.11084215
## 4 1 15 0.19958740 0.21342554
## 5 1 20 0.32122825 0.24382870
## 6 1 25 0.44922018 0.44300414
Use the function plot_grid()
from the cowplot
package to gather all plots into a grid
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25. DOI: 10.18637/jss.v033.i09